Dr. Louie Frobel P G

ResearchGate

https://www.researchgate.net/profile/Louie-Frobel


Dr. Sajeesh T H

https://scholar.google.co.in/citations?user=oEg32v0AAAAJ&hl=en

  • “Optimization of parameters of chemical spray pyrolysis technique to get n and p-type layers of SnS” , T. H. Sajeesh, A. R. Warrier, C. S. Kartha and K. P. Vijayakumar, Thin Solid Films, 518 (2010) 4370–4374.
  • “Unveiling the defect levels in SnS thin films for photovoltaic applications using photoluminescence technique”, T. H. Sajeesh, N. Poornima, C. S. Kartha, and K. P. Vijayakumar, Phys. Status Solidi A 207 (2010), No. 8, 1934–1939.
  • “Ex-situ Sn diffusion: a well suited technique for enhancing the photovoltaic properties of the SnS absorber layer”, T. H. Sajeesh, S. Kartha, C. Sanjeeviraja Y. Kashiwaba and K. P. Vijayakumar, J. Phys. D: Appl. Phys, 43 (2010) 445102-445108.
  • “Engineering Structural and Opto-Electronic Properties of SnS Films Deposited using Chemical Spray Pyrolysis Technique by Controlling pH of the Precursor Solution”, T. H. Sajeesh, A. S. Cherian, C. S. Kartha, K. P. Vijayakumar, Energy Procedia, 15 (2012) 325-33.
  • “Role of pH of precursor solution in taming the material properties of spray pyrolysed SnS thin films,” T. H. Sajeesh, K. B. Jinesh, C. S. Kartha, K. P. Vijayakumar, Applied Surface Science, 258 (2012) 6870-6875.
  • “Defect levels in SnS thin films prepared using chemical spray Pyrolysis”, T. H. Sajeesh, K.B. Jinesh, M. Rao, C. S. Kartha, K. P. Vijayakumar, Phys. Status Solidi A, 209 (2012) 1274-1278.
  • “Determination of thermal and electronic carrier transport properties of SnS thinfilms using photothermal beam deflection technique”, A. R. Warrier, T. H. Sajeesh, C. S. Kartha, K. P. Vijayakumar, Material Research Bulletin 47 (2012) 3758-3763
  • “Influence of indium concentration and growth temperature on the structural and optoelectronic properties of indium selenide thin films” R. Sreekumar, T. H. Sajeesh, T. Abe, Y. Kashiwaba, C. Sudha Kartha, and K. P. Vijayakumar, Phys. Status Solidi B, 1–8 (2012)/ Dh profiling, T. H. Sajeesh, K. G. Deepa, and K. P. Vijayakumar, AIP Conference Proceedings 1832, 080029 (2017);

Dr. Arun Babu

https://scholar.google.co.in/citations?user=rdVOEIMAAAAJ&hl=en

Research Gate

https://www.researchgate.net/profile/Arun-Babu-K-P

  • “Constraints on the Very High Energy Gamma-Ray Emission from Short GRBs with HAWC”, Albert et. al., 2022,  The Astrophysical Journal, 936, 126, (HAWC collaboration)        https://iopscience.iop.org/article/10.3847/1538-4357/ac880e       DOI:10.3847/1538-4357/ac880e
  • “Long-term Spectra of the Blazars Mrk 421 and Mrk 501 at TeV Energies Seen by HAWC”, A. Albert et. al., 2022, The Astrophysical Journal, 929, 125A, (HAWC collaboration)        https://iopscience.iop.org/article/10.3847/1538-4357/ac58f6       DOI:10.3847/1538-4357/ac58f6
  • “Cosmic ray spectrum of protons plus helium nuclei between 6 and 158 TeV from HAWC data”, A. Albert et. al., 2022, Rev. D, 105, 063021, (HAWC collaboration)        https://link.aps.org/doi/10.1103/PhysRevD.105.063021       DOI:10.1103/PhysRevD.105.063021
  • “Characterization of the background for a neutrino search with the HAWC observatory”, Albert et. al., 2022,  Astroparticle Physics, 137, 102670, (HAWC collaboration)        https://www.sciencedirect.com/science/article/abs/pii/S0927650521001018       DOI:10.1016/j.astropartphys.2021.102670
  • “HAWC as a Ground-Based Space-Weather Observatory”, C. Alvarez et al., 2021, Phys, 296, 89. ( Corresponding author for HAWC collaboration),        https://doi.org/10.1007/s11207-021-01827-z       DOI: 10.1007/s11207-021-01827-z
  • “TeV emission of Galactic plane sources with HAWC and H.E.S.S “, H. Abdalla et al., 2021, The Astrophysical Journal, 917, 6, (HAWC collaboration)        https://iopscience.iop.org/article/10.3847/1538-4357/abf64b        DOI: 10.3847/1538-4357/abf64b
  • “Probing the Sea of Cosmic Rays by Measuring Gamma-Ray Emission from Passive Giant Molecular Clouds with HAWC”, Albert et. al., 2021,  The Astrophysical Journal, 914, 106, (HAWC collaboration),        https://iopscience.iop.org/article/10.3847/1538-4357/abfc47{ \textcolor{blue{DOI: 10.3847/1538-4357/abfc47
  • “HAWC Search for High-Mass Microquasars”, Albert et. al., 2021,   The Astrophysical Journal Letters, 912, L4, (HAWC collaboration),         https://doi.org/10.3847/2041-8213/abf35a       DOI: 10.3847/2041-8213/abf35a
  • “Galactic Cosmic Ray increase associated with an interplanetary magnetic cloud observed by HAWC”, Alejandro Lara, P. Arunbabu, Tatiana Niembro, Proceedings of $37^{th$ International Cosmic Ray Conference (ICRC2021),        https://pos.sissa.it/395/1296/pdf       POS(ICRC2021)1296
  • “Spectrum and Morphology of the Very High Energy $\gamma$-Ray Source HAWC J2019+368″, Albert et. al., 2021,  The Astrophysical Journal, 911, 143, (HAWC collaboration)        https://iopscience.iop.org/article/10.3847/1538-4357/abecda       DOI: 10.3847/1538-4357/abecda
  • “Evidence that ultra-high-energy gamma-rays are found in the vicinity of powerful pulsars”, A. Albert et. al., 2021, The Astrophysical Journal Letters, 911, L27, (HAWC collaboration)        https://doi.org/10.3847/2041-8213/abf4dc       DOI: 10.3847/2041-8213/abf4dc
  • “HAWC observations of the acceleration of very-high-energy cosmic rays in the Cygnus Cocoon”, A. U. Abeysekara et al., 2021, Nature  (HAWC collaboration)       https://doi.org/10.1038/s41550-021-01318-y       DOI: 10.1038/s41550-021-01318-y
  • “A survey of active galaxies at TeV photon energies with the HAWC gamma-ray observatory”, A. Albert et. al., 2021, The Astrophysical Journal, 907, 67. (HAWC collaboration)        https://doi.org/10.3847/1538-4357/abca9a       DOI: 10.3847/1538-4357/abca9a
  • “Evidence of 200 TeV photons from HAWC J1825-134”, A. Albert et. al., 2021, The Astrophysical Journal Letters, 907, 30. (HAWC collaboration)         https://doi.org/10.3847/2041-8213/abd77b       DOI: 10.3847/2041-8213/abd77b
  • “Multimessenger Gamma-Ray and Neutrino Coincidence Alerts using HAWC and IceCube sub-threshold Data”, H. A. Ayala Solares et.al., 2021, The Astrophysical Journal, 906, 63. (HAWC collaboration)      https://doi.org/10.3847/1538-4357/abcaa4       DOI: 10.3847/1538-4357/abcaa4
  • “Interplanetary Flux-rope observed at ground level by HAWC”, S.Akiyama et al., 2020, The Astrophysical Journal, 905, 73. ( Corresponding author for HAWC collaboration)       https://doi.org/10.3847/1538-4357/abc344       DOI:10.3847/1538-4357/abc344
  • “3HWC: The Third HAWC Catalog of Very-High-Energy Gamma-ray Sources”, A. Albert et al., 2020, The Astrophysical Journal,905, 76. (HAWC collaboration)         https://doi.org/10.3847/1538-4357/abc2d8       DOI:10.3847/1538-4357/abc2d8
  • “HAWC and \textit{Fermi-LAT Detection of Extended Emission from the Unidentified Source 2HWC J2006+341”, A. Albert et al., 2020, The Astrophysical Journal Letters,903, L14, (HAWC collaboration)      https://doi.org/10.3847/2041-8213/abbfae       DOI:10.3847/2041-8213/abbfae
  • “HAWC J2227+610 and its association with G106.3+2.7, a new potential Galactic PeVatron”, A. Albert et. al., 2020, The Astrophysical Journal Letters.\, 896L, 29A. (HAWC collaboration)       https://doi.org/10.3847/2041-8213/ab96cc       DOI:10.3847/2041-8213/ab96cc
  • “Search for gamma-ray spectral lines from dark matter annihilation in dwarf galaxies with the High-Altitude Water Cherenkov observatory”, A. Albert et. al., 2020, Rev. D, 101, 103001. (HAWC collaboration)         https://doi.org/10.1103/PhysRevD.101.103001       DOI: 10.1103/PhysRevD.101.103001
  • “Constraining the Local Burst Rate Density of Primordial Black Holes with HAWC”, Albert et. al., 2020,   JCAP, 2020, 026. (HAWC collaboration)        https://doi.org/10.1088/1475-7516/2020/04/026       DOI:10.1088/1475-7516/2020/04/026
  • “Constrains on the Emission of Gamma Rays from M31 with HAWC”, A. Albert et al., 2020, The Astrophysical Journal, 893, 16A. (HAWC collaboration)         https://doi.org/10.3847/1538-4357/ab7999       DOI:10.3847/1538-4357/ab7999
  • “Constraints on Lorentz invariance violation from HAWC observations of gamma rays above 100 TeV”, A. Albert et. al., 2020, Rev.Lett.,124, 131101. (HAWC collaboration)        https://doi.org/10.1103/PhysRevLett.124.131101       DOI:10.1103/PhysRevLett.124.131101
  • “Multiple Galactic Sources with Emission Above 56 TeV Detected by HAWC”, A. U Abeysekara et al., 2020, Rev.Lett., 124, 021102. (HAWC collaboration)        https://doi.org/10.1103/PhysRevLett.124.021102       DOI:10.1103/PhysRevLett.124.021102
  • “Measurement of the Crab Nebula Spectrum Past 100 TeV with HAWC”, A. U. Abeysekara et al., 2019, The Astrophysical Journal, 881, 134A. (HAWC collaboration)        https://doi.org/10.3847/1538-4357/ab2f7d       DOI:10.3847/1538-4357/ab2f7d
  • “Atmospheric pressure dependance of HAWC scaler system”, P. Arunbabu, Lara, A., Ryan, J. ,   Proceedings of $36^{th$ International Cosmic Ray Conference (ICRC2019) :        https://pos.sissa.it/358/1095/pdf       POS(ICRC2019)1095
  • “Effects of the atmospheric electric field on the HAWC scaler rate.”, Ricardo Jara, Lara A., P. Arunbabu, James Ryan,   Proceedings of $36^{th$ International Cosmic Ray Conference (ICRC2019) :       https://pos.sissa.it/358/1087/pdf       POS(ICRC2019)1087
  • “Galactic Cosmic Ray Sun Shadow during the declining phase of cycle 24 observed by HAWC”, Alejandro Lara, Paulina Colin, P. Arunbabu, James Ryan,   Proceedings of $36^{th$ International Cosmic Ray Conference  (ICRC2019) :        https://pos.sissa.it/358/1104/pdf       POS(ICRC2019)1104
  • “Measurement of the radial diffusion coefficient of galactic cosmic rays near the Earth by the GRAPES-3 experiment”, Kojima, H., Arunbabu, K. P., Dugad, S. R., et.al., 2018,  Rev D, 98, 022004.      https://doi.org/10.1103/PhysRevD.98.022004       DOI:10.1103/PhysRevD.98.022004
  • “Was the cosmic ray burst detected by the GRAPES-3 on 22 June 2015 caused by transient weakening of geomagnetic field or by an interplanetary anisotropy?” K. Mohanty,    K.P. Arunbabu, T. Aziz, et.al., 2018,  Phys. Rev D, 97, 082001.        https://doi.org/10.1103/PhysRevD.97.082001       DOI:10.1103/PhysRevD.97.082001
  • “Dependence of the muon intensity on the atmospheric temperature measured by the GRAPES-3 experiment”, P. Arunbabu et al., 2017,  Astroparticle Physics, 94, 22.        https://doi.org/10.1016/j.astropartphys.2017.07.002       DOI:10.1016/j.astropartphys.2017.07.002
  • “Diffusion of cosmic rays in heliosphere, observations from GRAPES-3”, P. Arunbabu et. al.,   Proceedings of $35^{th$ International Cosmic Ray Conference (ICRC2017) :     https://pos.sissa.it/301/011/pdf       POS(ICRC2017)011
  • “Atmospheric temperature dependence of muon intensity measured by the GRAPES-3 experiment”, P. Arunbabu et. al.,   Proceedings of $35^{th$ International Cosmic Ray Conference (ICRC2017) :       https://pos.sissa.it/301/304/pdf       POS(ICRC2017)304
  • “Transient weakening of geomagnetic shield probed by GRAPES-3 experiment”, K. Mohanty,    K.P. Arunbabu, S.R. Dugad et. al.,    Proceedings of $35^{th$ International Cosmic Ray Conference (ICRC2017):        https://pos.sissa.it/301/092/pdf       POS(ICRC2017)092
  • “Dependence of the GRAPES-3 EAS trigger rate and particle density on atmospheric pressure and temperature ”, M. Zuberi, S. Ahmad, P. Arunbabu et. al.,    Proceedings of $35^{th$ International Cosmic Ray Conference (ICRC2017) :        https://pos.sissa.it/301/302/pdf       POS(ICRC2017)302
  • “Precision measurement of arrival times in an EAS by GRAPES-3 experiment” ,  B. Jhansi,  S. Ahmad,   K.P. Arunbabu et. al.,    Proceedings of $35^{th$ International Cosmic Ray Conference (ICRC2017):        https://pos.sissa.it/301/354/pdf       POS(ICRC2017)354
  • “Measuring the hourly gain of the scintillator detectors from EAS data” , B. Jhansi,  S. Ahmad,   K.P. Arunbabu et. al.,    Proceedings of $35^{th$ International Cosmic Ray Conference (ICRC2017):   https://pos.sissa.it/301/356/pdf       POS(ICRC2017)356
  • “Long-term correction of GRAPES-3 muon telescope efficiency” , K. Mohanty,  S. Ahmad,   K.P. Arunbabu et. al.,    Proceedings of $35^{th$ International Cosmic Ray Conference (ICRC2017) :        https://pos.sissa.it/301/357/pdf       POS(ICRC2017)357
  • “Extending the range of particle densities observed by GRAPES-3” , Chandra,  S. Ahmad,   K.P. Arunbabu et. al.,   Proceedings of $35^{th$ International Cosmic Ray Conference (ICRC2017) :     https://pos.sissa.it/301/479/pdf       POS(ICRC2017)479
  • “Transient Weakening of Earth’s Magnetic Shield Probed by a Cosmic Ray Bursts” K. Mohanty,   K.P. Arunbabu, et. al., T. Aziz, et.al., 2016,  Phys. Rev. Lett. 117, 171101.        https://doi.org/10.1103/PhysRevLett.117.171101       DOI:10.1103/PhysRevLett.117.171101
  • “Role of solar wind speed and interplanetary magnetic field during two-step Forbush decreases caused by Interplanetary Coronal Mass Ejections ”, Baskar, Ankush., Vichare, Geeta.,  Arunbabu, K., P., Raghav, Anil., 2016,  Ap\&SS, 361, 242B.        https://doi.org/10.1007/s10509-016-2827-8       DOI:10.1007/s10509-016-2827-8
  • “Fast Fourier Transform to measure pressure coefficient of muons in the GRAPES-3 experiment.”, P.K.Mohanty, S.Ahmad, H.M. Antia, P. Arunbabu,et.al., 2016,  Astroparticle Physics,  79, 23–30.       https://doi.org/10.1016/j.astropartphys.2016.02.006       DOI:10.1016/j.astropartphys.2016.02.006
  • “How are Forbush decreases related to interplanetary magnetic field enhancements?”, P. Arunbabu et al., 2015,  Astronomy \& Astrophysics, 580A..41A.       https://doi.org/10.1051/0004-6361/201425115       DOI:10.1051/0004-6361/201425115
  • “Forbush decrease precursors observed in GRAPES-3”, P. Arunbabu et. al.,  Proceedings of $34^{th$ International Cosmic Ray Conference (ICRC2015) :        https://pos.sissa.it/236/044/pdf       POS(ICRC2015)044
  • “Relation of Forbush decrease with interplanetary magnetic fields.”, P. Arunbabu et. al.,  Proceedings of $34^{th$ International Cosmic Ray Conference (ICRC2015) :       https://pos.sissa.it/236/043/pdf       POS(ICRC2015)043
  • “Measurements of solar diurnal anisotropy with GRAPES-3 experiment”, K. Mohanty, H.M. Antia,   K.P. Arunbabu et. al.,    Proceedings of $34^{th$ International Cosmic Ray Conference (ICRC2015) :       https://pos.sissa.it/236/042/pdf       POS(ICRC2015)042
  • “A new method for determining atmospheric pressure coefficient by using fast Fourier transform for muons in the GRAPES-3 experiment”, K. Mohanty, H.M. Antia,   K.P. Arunbabu et. al.,    Proceedings of $34^{th$ International Cosmic Ray Conference (ICRC2015)  :        https://pos.sissa.it/236/045/pdf       POS(ICRC2015)045
  • “Self-similar expansion of solar coronal mass ejections: implications for Lorentz self-force driving”, P. Subramanian, P. Arunbabu, A. Vourlidas, A. Mauriya, 2014,  The Astrophysical Journal, 790, 125.      https://iopscience.iop.org/article/10.1088/0004-637X/790/2/125       DOI:10.1088/0004-637X/790/2/125
  • “High-rigidity Forbush decreases: due to CMEs or Shock?”, P. Arunbabu et al., 2013,  Astronomy \& Astrophysics, 555, 139.        https://doi.org/10.1051/0004-6361/201220830       DOI:10.1051/0004-6361/201220830
  • “How are Forbush decreases related with IP magnetic field enhancements ?”, P. Arunbabu et. al.,  Proceedings of the International Symposium on Solar Terrestrial Physics, ASI Conference Series, 2013, 10, 97. :        https://astron-soc.in/bulletin/asics_vol010/095-arunbabu.pdf       ASI, ISSTP

Dr. Lijo T George

https://scholar.google.com/citations?hl=en&authuser=2&user=4tNYEegAAAAJ

  • Ehrenfest’s Theorem and Non-Classical States of Light (Part 1), Lijo T. George, C. Sudheesh, S. Laxmibala, V. Balakrishnan, RESONANCE, Vol 17, No. 1, 2012
  • Ehrenfest’s Theorem and Non-Classical States of Light (Part 2), Lijo T. George, C. Sudheesh, S. Laxmibala, V. Balakrishnan, RESONANCE, Vol 17, No. 2, 2012
  • Pilot observations of the merging galaxy cluster Abell 3376 using the Murchison Widefield Array, George, Lijo T.; Dwarakanath, K. S. et al., 2014, ASInC, 13, 205G
  • An analysis of halo and relic radio emission from Abell 3376 from Murchison Widefield Array observations, George, Lijo T.; Dwarakanath K. S. et al., 2015, MNRAS, 451, 4207
  • A study of halo and relic radio emission in merging clusters using the Murchison Widefield Array, George, Lijo T.; Dwarakanath K. S. et al., 2017, MNRAS, 467, 936
  • Twin radio relics in the nearby low-mass galaxy cluster Abell 168 , Dwarakanath K. S.; Parekh, V.; Kale, R.; George, Lijo T., 2019, MNRAS, 477, 957
  • An upper limit calculator (UL-CALC) for undetected extended sources with radio interferometers: radio halo upper limits, George, Lijo T.; Kale, R.; Wadadekar, Y., 2021, Experimental Astronomy, Vol. 51, 235–248
  • Imaging results from the GMRT Key Project on galaxy clusters, George, Lijo T.; Kale, R.; Wadadekar, Y., 2021, MNRAS, 507, 4487
  • Data-Efficient Classification of Radio Galaxies, Samudre, A.; Lijo T. George; Bansal, M.; Wadadekar, Y., 2022, MNRAS, 509, 2269

Dr. Anjana R

https://scholar.google.co.in/citations?user=dSyaqNgAAAAJ&hl=en

  • Clean synthesis of Er, Yb doped fluorapatite upconversion nanoparticles through liquid phase pulsed laser ablation, R. Anjana, T. K. Krishnapriya, M. K. Jayaraj, Journal of Optics and Laser Technology, 131,106458(2020)
  • Synthesis of Yb3+/Er3+ co-doped Y2O3, YOF and YF3 UC phosphors and their application in solar cell for sub-bandgap photon harvesting, K. M. Kurias, R. Anjana, Aldrin Antony, M.K. Jayaraj, Journal of luminescence, 204, 448(2018)
  • Investigating the evolution of local structure around Er and Yb in ZnO: Er and ZnO: Er, Yb on annealing using X-ray absorption spectroscopy, R. Anjana, M. K. Jayaraj, K. Yadav, S. N. Jha and D. Bhattacharyya, Journal of Applied Physics 123, 153102 (2018)
  • Enhanced green upconversion luminescence in ZnO:Er3+,Yb3+ on Mo6+ co-doping for temperature sensor application, R. Anjana, P. P. Subha, K. M. Kurias, M. K.Jayaraj, Methods and Application in Fluorescence, 6, 015005 (2017)
  • Room temperature ferromagnetism in Zn1-xNixO nanostructures synthesised by chemical precipitation method, Levna Chacko, K.M. Shafeeq, R. Anjana, M. K. Jayaraj and P.M. Aneesh, Materials Research Express, 4, 10 (2017)
  • Clean synthesis of YOF: Er3+, Yb3+ upconversion colloidal nanoparticles in water through liquid phase pulsed laser ablation for imaging applications, R. Anjana, K. M. Kurias, M. K. Jayaraj, Optical materials, 72, 730 ( 2017)
  • Synthesis and characterisation of Au-MWCNT/PEDOT: PSS composite film for optoelectronic applications, M. Jasna, R. Anjana, M. K. Jayaraj, Proceedings of SPIE, 10349, 103491B-1 (2017)
  • Biocompatible Er, Yb co-doped fluorapatite upconversion nanoparticles for imaging applications, R. Anjana, K. M. Kurias, M. K. Jayaraj, Proceedings of SPIE, 10344, 103440U-1 (2017)
  • Wasp-waisted magnetism in hydrothermally grown MoS2 nanoflakes, Levna Chacko, A K Swetha , R. Anjana , M. K. Jayaraj and P. M. Aneesh, Materials Research Express, 3, 116102 (2016)
  • Preparation of ZnO nanoparticles showing upconversion luminescence through simple chemical method, R. Anjana, P. P. Subha, K. M. Kurias, and M. K. Jayaraj, AIP Conference Proceedings, 1731, 050078 (2016)
  • Structural and optical studies of hydrothermally synthesised MoS2 nanostructures, Levna Chacko, A. K. Swetha, R. Anjana, and P. M. Aneesh, AIP Conference Proceedings, 1728, 020620 (2016)
  • Enhancement of a-Si:H solar cell efficiency by Y2O3 : Yb , Er near infrared spectral upconverter, K. M. Kurias, R. Anjana, P.P. Subha, Aldrin Antony, M. K. Jayaraj, Proceedings of SPIE, 9937, 99370X (2016)

Dr. Paxy George

  • Paxy George and Titus K Mathew, “Holographic Ricci dark energy as running vacuum”, Phys. Lett. A 31, 1650075(2016). (Journal Impact factor 1.367)
  • Paxy George, V. M. Shareef and Titus K Mathew, “Interacting holographic Ricci dark energy as running vacuum”, J. Mod.Phys. D 28, 1950060 (2018). (Journal Impact factor 2.004)
  • Paxy George and Titus K Mathew, “Bayesian analysis of holographic Ricci dark energy as running vacuum”, submitted to Not. R. Astron.Soc. 499, 5598 (2020). (Journal Impact factor 5.231)
  • Paxy George, “Holographic Ricci dark energy as running vacuum with nonlinear interactions”, Accepted in IJMPD, arXiv:2201.06739v1 [gr-qc]

Dr. Anu Varghese

  • The Effect of Drifting Lighter Ions on Solitary Waves in Heavier, Pair Ion Plasmas with Kappa Described Electrons

Anu, V., Neethu, T.W., Tasnim. H., Shilpa. S., Venugopal, C., J. Phys. Res. Appl. 1, 1 (2017).  

  • Dust Acoustic Solitary Waves in a five-component cometary plasma with charge variation

Anu, V., Saritha, A.C., Neethu, T.W., Manesh, M., Sijo, S., Sreekala, G., Venugopal, C., J. Astrophys. Astr.  41, 11 (2020).   

  • Stability of Current-Driven Electrostatic Waves in a Magnetized and Collisional Negative Ion Plasma.

Venugopal, C., Anu, V., Jyothi, S., Molly, I., and Renuka, G. Phys. Scr. 78 045501 (2008).

  • Effect of Ion Drift on Shock Waves in an Unmagnetized Multi-Ion Plasma.

Sijo, S., Anu, V., Neethu, T.W., Manesh, M., Sreekala, G., Venugopal, C., OAJ Math. Theor. Phy. 1, 179 (2018).

  • Effects of Nonextensive Ions (Heavier and Lighter) on Ion Acoustic Solitary Waves in a Magnetized Five Component Cometary Plasma with Kappa Described Electrons.

Manesh, M., Anu, V., Neethu, T.W., Sijo, S., Sreekala, G., and Venugopal, C., Plasma Phys. Rep. 46, 541 (2020).

  • Effect of Lighter and Heavier Pair Ions on Solitary Waves.

Sijo, S., Anu, V., Manesh, M., Sreekala, G., Neethu, T.W., Savithri, D. E., and Venugopal, C., Journal of Physics Conference Series, 012003 (2017).

  • Oblique ion-acoustic Shock Waves in a Magnetized, Multi-Species Plasma.

Manesh, M., Anu, V., Neethu, T.W., Sijo, S., Savithri Devi, E., Sreekala, G., and Venugopal, C., Journal of Physics Conference Series, 012007 (2017)

  • Stability of the Magnetosonic Wave in a Cometary Multi-Ion Plasma.

Sreekala, G., Anu, V., Neethu, J., Manesh, M., Sijo, S., and Venugopal, C., Adv. Space Res. 59, 2679 (2017).

  • Ion-Acoustic Double Layers in a Five Component Cometary Plasma with Kappa Described Electrons and Ions.

Manesh, M., Sreekala, G., Sijo, S., Neethu, T. W., Anu, V., and Venugopal, C., IOSR J. Appl. Phys. 8, 34 (2016).  

  • Rogue Waves in Multi-Ion Cometary Plasmas.

Sreekala, G., Manesh, M., Anu, V., Neethu, T.W., Sijo, S., and Venugopal, C., Plasma Phys. Rep. 44, 102 (2018)

  • Kadomstev-Petviashvili-Burgers (KPB) Equation in a Five Component Cometary Plasma with Kappa Described Electrons and Ions.

Manesh, M., Sreekala, G., Sijo, S., Neethu, T. W., Anu, V., Renuka, G., and Venugopal, C., J. Appl. Math. Phys. 03, 1431 (2015).

  • Effect of Anisotropy of Lighter and Heavier Ions on Solitary Waves in a Multi-Ion Plasma.

Manesh, M., Sijo, S., Anu, V., Sreekala, G., Neethu, T.W., Savithri, D. E., Venugopal, C., Phys. Plasmas 24, 062905 (2017).

  • Fast and Slow Mode Solitary Waves in a Five-Component Plasma.

Sijo, S., Manesh, M., Sreekala, G., Anu, V., and Venugopal, C., Braz. J. Phys.  47, 46 (2016).

  • Ion Acoustic Shock Waves with Drifting Ions in a Five Component Cometary Plasma.
  1. T. Willington, A. Varghese, A. C. Saritha et al., Advances in Space Research, https://doi.org/10.1016/j.asr.2021.08.001
  • Ion Acoustic Solitary Waves in a Magnetized Five Component Cometary Plasma with Kappa Described Electrons and Non-extensive Pair Ions.

Manesh, M., Anu, V., Neethu, T.W., Sijo, S., Sreekala, G., and Venugopal, C.,   Proceedings of 5th Plasma Scholars Colloquium (PSC-2016). ISBN – 97881926579742, 6 (2016).

  • Effect of Dust and Ion Pressure Anisotropy on Solitary Waves in a Five Component Plasma.

Sijo, S., Neethu, T. W., Anu, V., Manesh, M., Sreekala, G., and Venugopal, C., Published in the Proceedings of 5th Plasma Scholars Colloquium (PSC-2016).  ISBN- 97881926579742, 16 (2016).